Касса

Прогнозирование надежности изделий по уровню качества технологических процессов. Основные методы прогнозирования надежности Метод подобия изделий или схем

Прогнозирование надежности изделий по уровню качества технологических процессов. Основные методы прогнозирования надежности Метод подобия изделий или схем

В жизни любого объекта, как некоторого изделия всегда можно выделить два этапа: производство и эксплуатация данного объекта. Бывает так же этап хранения этого объекта.

Для любого объекта на каждом этапе его жизни задаются определенные технические требования. Желательно, чтобы объект всегда соответствовал этим требованиям. Однако в объекте могут возникнуть неисправности, нарушающие указанное соответствие прибора. Тогда задача состоит в том, чтобы создать на этапе производства или восстановить нарушенную неисправность (которая может появиться на этапах эксплуатации или хранения) в соответствии с заданными техническими требованиями прилагаемыми объекту.

Решение этой задачи невозможно без эпизодического или непрерывного диагноза состояния объекта. Состояние объекта определяется его надежностью. Надежность: это свойство объекта выполняемых заданных функций сохранения, во время значений и установленных эксплуатационных показателей в заданных режимах и условиях использования, технического обслуживания, ремонта и т.д.

Исправное состояние: это состояние, при котором прибор соответствует всем требованиям устнормативной – технической документации.

Неисправное состояние: это состояние, при котором прибор, объект не соответствует хотя бы одному из требований нормативно – технической документации.

Работоспособное состояние: это состояние объекта, при котором он способен выполнять заданные функции, сохраняя значения заданных нормативов в пределах установленных документацией.

Неработоспособное состояние: это состояние, при котором значения хотя бы одного заданного параметра не соответствуют нормативно – технической документации.

Понятие повреждение заключается в нарушении исправного состояния изделия при сохранении его работоспособности. Для любого изделия существуют понятия: дефект, неисправность, отказ, сбой и ошибка.

Дефект: это отклонение от параметров изделия относительно заданных в нормативно – технической документации.

Неисправность: форматированное представление факта проявления дефекта на входах и выходах изделия.

Отказ: дефекты, связанные с необратимыми нарушениями характеристик изделия, приводящим к нарушению его работоспособного состояния.

Сбой: дефект, заключающийся в том, что в результате временного изменения параметров изделия в течение некоторого периода времени оно будет функционировать непрерывно. Причем его работоспособность восстанавливается самонаправленно. Помехи, воздействующие на работоспособность.

Ошибки: (для дискретной техники) называют неправильное значение сигналов на внешних входах изделия, вызванное неисправностями, переходными процессами или помехами, воздействующими на изделие.

Число дефектов, неисправностей, отказов, сбоев, одновременно присутствующих в изделии называют кратностью.

Кратность ошибок определена не только кратностью неисправности, из-за которой она возникла, но и структурной схемой изделия, т.к. в результате имеющихся разветвлений в схеме однократная неисправность может вызвать многократную ошибку в последовательных цепях.

Безотказность: свойство изделия, в котором он непрерывно сохраняет работоспособность в течение некоторого времени.

Ремонтопригодность: свойство изделия, заключающееся в приспособленности к предупреждению и обнаружению причин возникновения его отказов, повреждений и устранения их путем ремонта и технического обслуживания.

Показатели безотказности:

1) Вероятность безотказной работы P(t) – это вероятность того, что в заданном интервале времени t в изделии не возникает отказа.

0£ P(t) £1; P(o) = 1; P(¥) = 0;

Функция P(t) является монотонно убывающей функцией, т.е. в процессе эксплуатации и хранения надежность только убывает. Для определения P(t) используется следующая статическая оценка:

где N – число изделий, поставленных на испытание (эксплуатацию).

N 0 – число изделий, отказавших в течении времени t.

2) Вероятность бессбойной работы Р сб (t) – это вероятность того, что в заданном интервале времени t будет отсутствовать сбой в изделии.

Р сб (t) = 1- Q сб (t); где - Q сб (t) функция распределения сбоев в течение времени t.

Для определения стабильности оценки мы имеем формулу:

где N – число изделий поступивших на эксплуатацию.

N 0 – число изделий, в которых произошел сбой в течение времени t.

3) Интенсивность отказа l(t) – это условная плотность вероятности возникновения отказа не восстанавливаемого объекта, определенного рассмотренного момента времени, при условии, что до этого момента отказ не возник.

Для определенно l(t) используется следующая статистическая оценка:

где n(Dt) – число отказавших изделий в интервал времени (Dt).

N ср (Dt) – ссреднее число исправных изделий в интервал времени (Dt).

;

4) Средняя наработка до отказа (среднее время безотказной работы) Т – это математическое ожидание наработки до первого отказа определяется так:

Эти показатели рассчитаны на изделие, которое не подлежит восстановлению.

Показатели ремонтопригодности:

1) Вероятность восстановления s(t) – это вероятность того, что отказавшее изделие будет восстановлено в течение времени t.

где n в – число изделий время восстановления которых было < (меньше) заданного времени t. N ов – число изделий оставшихся на восстановлении.

2) Интенсивность восстановленного М(t) – условная плотность распространения времени восстановления для момента времени t при условии, что до этого момента восстановление изделия не произошло.

где n в (Dt) – число восстановленных изделий за время Dt. N в.ср (Dt) – среднее число изделий которые, не были восстановлены в течение времени Dt.

3) Среднее время восстановления Т в – это натуральная величина ожидания восстановления.


Статистическая оценка: ;

4) Коэффициент готовности К г (t) – это вероятность того, что изделие работоспособно в произвольный момент времени t.

Стационарный режим: t ® ¥.

К г = lim К г (t)

Стационарная оценка: ;

где t pi i – ый интервал времени исправной работы изделия.

t bi – интервал времени восстановления изделия.

n – число отказов изделия.

Коэффициент оперативной готовности К опер. (t, t) – работоспособна в произвольный момент времени t.

5) Коэффициент оперативной готовности К опер. (t, t) – это вероятность того, что аппаратура будет работоспособна в произвольный момент времени t. и безотказно проработает заданное время r.

К опер. (t, t) = К г (t) · Р(t)

Для определения К опер. имеется статистическая оценка:

ПРОГНОЗИРОВАНИЕ НАДЕЖНОСТИ НЕФТЕПРОМЫСЛОВОГО ОБОРУДОВАНИЯ ПРИ ПРОЕКТИРОВАНИИ

Проектирование любой сложной технической системы, в том числе нефтепромыслового оборудования, - первый и основной этап, на котором закладывается определенный уровень его надежности. Поэтому на различ­ных стадиях проектирования сложных систем (техническое предложение, эскизный проект, технический проект) возникает необходимость прогно­зировать ожидаемую надежность этих систем с целью количественной оценки показателей надежности проектируемого варианта изделия и со­поставления прогнозируемых показателей с требуемыми значениями. Прогнозирование особенно важно на ранних стадиях проектирования, когда необходимо сравнить по надежности различные варианты структур­ных схем разрабатываемой системы и ее узлов, что дает возможность своевременно осуществить меры по повышению надежности.

Основным принципом прогнозирования надежности изделий при проектировании должен быть системный подход, позволяющий учитывать особенности конструкции, возможности производства и условия эксплуа­тации.

Исходная информация для прогнозирования надежности изделий включает:

конструкторскую документацию на различных стадиях разработки изделия (техническое предложение, эскизный проект, технический проект и рабочие чертежи); данные об изделиях-аналогах, включающие статистические сведения об их надежности в эксплуатации; данные об испытаниях, включающие сведения о нагруженное™ деталей и сборочных единиц; сведения об условиях эксплуатации.

При прогнозировании надежности современные нефтепромысловые машины и механизмы рассматриваются как сложные системы, состоящие из большого числа деталей и сборочных единиц, которые определенным образом функционально связаны между собой и образуют так называе­мую иерархическую структурную схему - графическое изображение из­делия в виде совокупности его сборочных единиц и деталей, связанных между собой в порядке соподчинения по уровням. На первом уровне рас­сматриваются конструктивно-завершенные и имеющие самостоятельное функциональное назначение сборочные единицы, на последующих уров­нях - элементарные и неделимые единицы и т.д.

На основании структурных схем строятся математические модели, по которым прогнозируется надежность в зависимости от уровня безот­казности каждой детали и сборочной единицы. Различают:

минимальную структуру - укрупненную схему изделия, включающую сборочные единицы первого уровня и связи, отображающие его функцио­нальное назначение;

избыточную структуру - схему изделия, в минимальную структуру которой введены обеспечивающие или резервные подсистемы.

Таким образом, при прогнозировании надежности изделия в целом его структурную схему следует представлять в виде иерархической системы деталь - сборочная единица - изделие с выделением минималь­ной и избыточной структур.

Конкретный тип обеспечивающих подсистем вводят по результатам анализа связей в структуре системы и протекающих физических процес­сов, определяющих их надежность. В отличие от резервных подсистем обеспечивающие подсистемы вводят не с целью замещения отказавших основных подсистем, а для обеспечения благоприятных условий их функ­ционирования.

На первом этапе проводят оценку надежности минимальной структуры исследуемой системы. Вероятность безотказной работы Р (() минималь­ной структуры, состоящей из последовательно соединенных подсистем, выражают зависимостью Р (0= П Р-(1).

В зависимости от точности исходных данных и принятых допущений проводят ориентировочное и окончательное прогнозирование надежности сложных систем.

Ориентировочное прогнозирование показателей надежности проекти­руемых изделий проводят на стадиях разработки технического предложе­ния и эскизного проекта с использованием экспертных и экстраполяционных методов, а также опытно-статистических методов прогнозирования по изделиям-аналогам. При ориентировочных расчетах в основном оценивается ожидаемая безотказность проектируемой системы. Результа­ты ориентировочного прогнозирования безотказности позволяют опреде­лить рациональный состав системы по номенклатуре сборочных единиц, деталей и наметить пути повышения безотказности на стадии эскизного проектирования. Ориентировочное прогнозирование безотказности слож­ных систем основано на ряде допущений, которые в некоторых случаях идеализируют функционирование проектируемой сложной системы. Объясняется это тем, что для применения более точных методов часто не хватает исходных данных.

Окончательное прогнозирование показателей надежности проектируе­мых изделий проводят на стадии разработки технического проекта с использованием расчетного метода и метода исследовательских испыта­ний. При выборе метода прогнозирования надежности следует отдавать предпочтение расчетному методу, который наиболее полно учитывает формирующие надежность факторы: физическую природу отказов, пре­дельные состояния деталей, кинематические и динамические характерис­тики конструкции, внешние воздействия и др.

По результатам ориентировочных и окончательных расчетов делается прогноз о надежности проектируемой системы. Если полученные значения показателей надежности не соответствуют требуемым, делается вывод об их обеспечении за счет рассмотрения других вариантов изделия и при­менения схемных методов повышения надежности, в том числе резерви­рования. В случае применения резервирования проводится расчет надеж­ности резервированной системы, на основании которого окончательно выбирается метод резервирования и число резервных подсистем.

При прогнозировании надежности сложных технических систем целе­сообразно придерживаться определенной последовательности.

1. Проводится классификация деталей и сборочных единиц по принци­пу ответственности. К деталям и сборочным единицам, отказы которых опасны для жизни людей, устанавливаются более высокие требования безотказности.

2. Формулируются понятия отказа деталей и сборочных единиц проек­тируемой системы. При этом существен выбор числа деталей и сборочных единиц, влияющих на надежность системы. Необходимо учитывать только те детали и сборочные единицы, отказ которых приводит к полной или частичной утрате работоспособности системы.

3. Выбирается метод прогнозирования надежности в зависимости от этапа проектирования системы, точности исходных данных и принятых допущений.

4. Составляется иерархическая структурная схема изделия, включаю­щая основные функциональные детали и сборочные единицы, в том числе детали и сборочные единицы силовых и кинематических цепей, располо­женные по уровням в порядке их подчиненности, и отражающаясвязи между ними.

5. Рассматриваются все детали и сборочные единицы, начиная с верхне­го уровня структурной схемы и кончая нижним, с подразделением их на следующие группы:

а) детали и сборочные единицы, показатели которых следует опреде­лять расчетными методами;

б) детали и сборочные единицы с заданными показателями надежности, включая назначенные параметры потока отказов;

в) детали и сборочные единицы, показатели надежности которых следует определять опытно-статистическими методами или методами испытаний.

6. Для деталей и сборочных единиц, надежность которых определяют расчетными методами:

Определяют спектры нагрузок и другие особенности эксплуатации, для чего составляют функциональные модели изделия и его сборочных единиц, которые, например, могут быть представлены матрицей состоя­ний;

Составляют модели физических процессов, приводящих к отказам, и устанавливают критерии отказов и предельных состояний (разрушение от кратковременных перегрузок, наступление предельного износа и др.);

Классифицируют их на группы по критериям отказов и выбирают для каждой группы соответствующие методы расчета;

Проводят детерминированные расчеты (на прочность, долговечность и т.п.) при наиболее неблагоприятном сочетании факторов и условий эксплуатации, если при этом предельные состояния не достигаются, то соответствующую деталь или сборочную единицу при прогнозировании надежности Изделия не учитывают и исключают из структурной схемы; в противном случае проводят расчет вероятностными методами и определяют численные значения показателей надежности (методические указания по прогнозированию надежности изделий, сборочных единиц и деталей расчетным методом приведены в ГОСТ 27.301-83 "Надежность в технике. Прогнозирование надежности изделий при проектировании. Общие требования").

7. Строятся при необходимости графики зависимости показателей надежности от времени, на основании которых сравниваются надежности отдельных деталей или сборочных единиц, а также различных вариантов структурных схем системы.

8. На основании проведенного прогнозирования надежности делается вывод о пригодности системы для применения по назначению. Если расчетная надежность окажется ниже заданной, разрабатываются мероприятия, направленные на повышение надежности рассчитываемой системы.

Согласно работе "прогноз определяется как вероятностное научно обоснованное суждение о перспективах, возможных состояниях того или иного явления в будущем и (или) об альтернативных путях и сроках их осуществления".

По оценкам отечественных и зарубежных специалистов в настоящее время насчитывается более 150 методов прогнозирования, но число основных методов, повторяющихся в различных вариациях, во много раз меньше. Считают, что указанные методы базируются на двух крайних подходах: эвристическом и математическом.

Применительно к механическим системам, в частности, к автомобилям, методы прогнозирования при оценке показателей надежности начали применяться сравнительно недавно. Так, для нормирования пробегов новых конструкций L H рекомендована зависимость

где L C , σ c - средние значение и квадратическое отклонение ресурса серийной машины в эксплуатации.

Если увязать L c с календарным временем Т, то приходим практически к временному ряду L (или L H) в функции от Т.

В работе дана методика прогнозирования ресурсов агрегатов с использованием временных рядов и приведены конкретные примеры прогноза ресурсов двигателей. Применительно к автомобильному транспорту разработаны методы прогнозирования и управления технической эксплуатацией и надежность автомобилей . В частности, в работе рассмотрена система непрерывного прогноза оценки удельного уровня трудоемкости технического обслуживания и текущего ремонта, учитывающая связь краткосрочного, среднесрочного и долгосрочного прогнозов; даны конкретные примеры прогнозов указанных величин для грузовых автомобилей, автобусов и легковых автомобилей; рассмотрены основные аспекты принятия решений в условиях риска и неопределенности, основанные на байесовском подходе, теории игр и статистических решений.

Широкое распространение методы прогнозирования получили при оценке остаточного ресурса . В общем случае речь идет об аппроксимации индивидуальной реализации, связанной, например, с износом (или накопленным повреждением) аналитической зависимостью, параметры которой определяются по результатам диагностирования на предпрогнозном периоде с последующей экстраполяцией на интервале упреждения (прогноза) до достижения предельного состояния.

В ряде работ рассматриваются вопросы, связанные с прогнозированием (расчетом) параметров нагрузочных режимов агрегатов и деталей, необходимых для оценки статической прочности и усталостной долговечности при проектировании . Как правило, предлагаемые методы основываются на обобщении экспериментальных данных по нагрузочным режимам машин-аналогов или моделировании с использованием ЭВМ, но не предусматривают введения временного тренда. Поэтому прогноз осуществляется с помощью подстановки в расчетные зависимости конструктивных параметров проектируемой машины.

Теоретические и прикладные разработки в области прогнозирования надежности механических систем достаточно подробно освещены в ряде работ [...]. Порядок прогнозирования при использовании расчетных методов в общем случае предусматривает представление структуры изделия в виде иерархической системы "деталь - сборочная единица-изделие"; определение спектров нагрузок; формирование моделей физических нагрузок, приводящих к отказу; установление критериев отказов и предельных состояний; определение численных значений показателей надежности; оценку достоверности прогноза; корректирование показателей надежности с использованием результатов прогноза. Однако применение вышеизложенных положений для конкретных прогнозов затруднительно и это связано не только со спецификой изделий различных отраслей машиностроения, но и с недостаточной изученностью и неоднозначностью трактовки таких понятий, как классификация объекта прогноза, многовариантность и синтез прогнозов, процедуры принятия решений на основе прогнозной (априорной) информации и др. Поэтому целесообразно подробнее остановится на вопросах расчета показателей надежности механических систем при проектировании с точки зрения теории прогнозирования.

Под методологией прогнозирования понимается область знаний о методах, способах и системах прогнозирования . В соответствии с упомянутой работой и приведенной в ней терминологией под методом прогнозирования будем понимать способ исследования объекта прогнозирования, направленный на разработку прогноза, под методикой - совокупность одного или нескольких методов, наконец, под системой прогнозирования - упорядоченную совокупность методик и средств их реализации.

Теория прогнозирования включает в себя анализ объекта прогнозирования, в частности классификацию; методы прогнозирования, подразделяющиеся на формализованные (математические) и интуитивные (экспертные); системы прогнозирования, в том числе непрерывного, при котором за счет обратной связи осуществляется корректировка прогнозов в процессе функционирования объекта.

В соответствии с работами объекты прогнозирования классифицируются:

по природе (научно-технические, технико-экономические и т. д.);

по масштабности - в зависимости от числа значащих переменных, входящих в описание объекта, различают сублокальные (1-3 переменных), локальные (4-14), субглобальные (15-35), глобальные (36-100) и суперглобальные (свыше 100 переменных);

по сложности - в зависимости от степени взаимосвязанности переменных подразделяют на сверхпростые (отсутствие взаимосвязи), простые (наличие парных взаимосвязей), сложные (наличие взаимосвязи и взаимовлияния) и сверхсложные (необходимость учета взаимосвязи);

по степени детерминированности (детерминированные" стохастические и смешанные);

по характеру развития во времени регулярной составляющей процесса (тренда) - дискретные, апериодические и периодические;

по информационной обеспеченности периода ретроспекции - рассматривают объекты с полным количественным обеспечением, с неполным количественным обеспечением, с наличием качественной информации (и частично количественной), с полным отсутствием ретроспективной информации.

Прогнозирование показателей надежности механических систем, на наш взгляд, следует рассматривать в узком и широком смысле.

В узком смысле прогнозирование включает определение показателей надежности как характеристик, развернутых во времени; считается, что основные исходные данные - вид конструкции, материалы и технология изготовления деталей, нагрузочные режимы, условия эксплуатации, периодичности и объемы ТО и ремонтов, цены на детали и др. - заданы. Другими словами, прогнозирование в узком смысле производится после проверочного расчета. Помимо этого, накоплены определенные статистические данные о ресурсах деталей и агрегатов, т. е. предполагается, что имеется ретроспективная информация, которая может быть использована для экстраполяции, адаптации вероятностно-статистических моделей и т. п. Очевидно, в этом случае методы прогнозирования показателей надежности включают как основные или верифицируемые варианты различные виды расчетов показателей надежности при проектировании, основанные на физических моделях отказов.

В широком смысле прогнозирование подразумевает, что исходные данные для получения оценок надежности определяются с использованием опережающих методов прогнозирования (патентный, публикациониый и др.). Например, на основе опережающих методов прогнозируются параметры кривой износа, с помощью которой прогнозируются показатели надежности. Следовательно, в широком смысле прогнозирование показателей надежности разбивается на два этапа: первый - прогноз исходных данных; второй - собственно прогноз показателей надежности.

Трудность оценки надежности возрастает многократно при создании новых конструкций, материалов и т. д., по которым отсутствует количественная информация. Поскольку при получении информации о результатах различных испытаний происходит уточнение исходных данных, ресурсов и т. п., то прогнозирование может быть осуществлено только в виде непрерывной прогнозирующей системы.

В предложенной книге основное внимание уделено разработке методологии прогнозирования показателей надежности в узком смысле.

Рассмотрим объект прогноза - показатели надежности (ПН) деталей и агрегатов автомобиля - с точки зрения рассмотренной выше классификации. Очевидно, по природе ПН следует отнести к классу научно-технических прогнозов, включающих наряду с новыми видами техники, новыми материалами и прогноз технических характеристик. Для оценки масштабности и сложности объекта прогнозирования составим табл. 1.7, в которую включим основные показатели надежности (см. табл. 1.3) и модели расчета, рассмотренные в п. 1.2. Несмотря на условный характер классификации, из табл. 1.7 видно, что по масштабности и сложности показатели надежности агрегатов и автомобиля следует отнести к глобальным (суперглобальным) и сложным (сверхсложным).

По степени детерминированности оценки ПН являются стохастическими, при этом следует обратить внимание, что при расчете показателей надежности элементов деталей, т. е. на низшем уровне, мы сталкиваемся с так называемой природной неопределенностью, когда невозможно дать точную оценку показателя, например среднего ресурса, из-за недостаточной изученности объекта.

По характеру развития ПН классифицировать трудно. Так, на уровне расчетных моделей на износ реализации его могут быть представлены апериодическими зависимостями, тогда как в расчетах на усталость нагрузочные режимы - это случайные не-стационарные процессы. В то же время, рассматривая ретроспективную нормативную информацию о ресурсах автомобилей до капитального ремонта, можно сказать, что в зависимости от времени выпуска (или существенной модернизации) назначаемый заводом ресурс изменяется дискретно.

Наконец объект прогнозирования с точки зрения информационной обеспеченности полностью отвечает введенному ранее понятию прогнозирования надежности механических систем в узком и широком смысле.

Таким образом, оценки показателей надежности деталей и агрегатов автомобиля соответствуют принципам классификации объектов прогнозирования.

Математические формализованные методы прогнозирования подразделяют на симплексные (простые), статистические и комбинированные. Основу симплексных методов составляют экстраполяции по временным рядам (метод наименьших квадратов, экспоненциального сглаживания и другие). Статистические методы включают корреляционный и регрессионный анализ, метод группового учета аргументов, факторный анализ. Под комбинированным методом подразумевается синтез вариантов прогнозов, выполненных о использованием математических и эвристических методов.

Следует обратить внимание на отличие прогнозных оценок при использовании общих методов прогнозирования и при оценке показателей надежности. Так, прогноз в общем случае представляется в виде точечной и интервальной оценок. При прогнозировании надежности, например, ресурса деталей его средняя величина совпадает с точечным прогнозом, но для перехода к другим показателям интервальной оценки недостаточно, т. к. необходимо знать плотность распределения ресурсов.

Учитывая, что при прогнозировании ПН на ранних стадиях проектирования нет возможности проведения экспериментов с целью раскрытия "природной" неопределенности, возможный путь решения сводится к разработке нескольких прогнозных методов с целью использования их в комбинированнном прогнозе. Поэтому указанные математические методы должны быть дополнены специальными методами и методиками, которые условно можно разделить на три группы.

Первая группа специальных методов, предназначенная для прогнозирования показателей надежности деталей, включает вероятностно-статистические модели (ВСМ), основанные на феноменологических явлениях и гипотезах (расчеты на износ, усталость прочность и т, д.). Однако, как показал анализ (см. п, 1.2.), применение этих моделей для прогнозирования ПН требует со-ответствующей систематизации и классификации, а также накопления и обобщения опыта прогнозных расчетов применительно к конкретным деталям с целью повышения их достоверности и точности.

Ко второй группе следует отнести методы, являющиеся обобщением экстраполяционных и статистических методов и отражающие специфику эксплуатационных отказов, в частности корреляционные уравнения долговечности (КУД) для деталей шасси автомобиля . Очевидно, отдельные разработки по КУД должны быть формализованы в виде соответствующей методики.

Третью группу специальных методов, предназначенных для прогнозирования показателей надежности сборочных единиц, агрегатов, изделия в целом, составляют структурно-функциональные модели (СФМ), которые в общем случае отражают взаимосвязь и взаимовлияния отдельных деталей на протекание разрушительных процессов, приводящих к отказам, предельные состояния сопряжений и т. д. В частном случае СФМ может быть построена с учетом показателей надежности деталей, спрогнозированных с помощью общих и специальных методов первой и второй группы. На основании этих прогнозов производится расчет (моделирование) показателей надежности восстанавливаемого объекта. Многовариантность и неопределенность прогноза определяются не только многовариантностью и неопределенностью исходных данных, но и стратегией ремонтов (замен), коррелируемостью отказов и т. д. Отсутствие общей методики прогнозирования ПН с помощью СФМ требует проведения соответствующих исследований.

Введение специальных методов увеличивает число вариантов прогноза ПН, что приводит к усложнению процедуры принятий решений на основе прогнозной информации. Редуцирования числа вариантов можно достигнуть с помощью комбинированного прогноза, методика которого, на наш взгляд, должна быть усовершенствована с учетом разработок, приведенных в , и конкретизирована применительно к ПН.

Дополним классификацию объектов прогноза по масштабности и сложности рассмотренными методами прогнозирования. Из табл. 1.6 видно, что специальные методы находят применение при оценке всех ПН и моделей отказов; использование комбинированных методов приводит к увеличению масштабности и сложности объекта прогноза, но это пока единственный путь повышения точности и достоверности оценок ПН при проектировании.

Заметим, что практическое применение общих и специальных методов прогнозирования становится возможным при наличии конкретных методик расчета, доведенных до соответствующих алгоритмов и программ, и информационной базы, включающей конструктивную документацию и банки данных по изделиям- аналогам о показателях надежности, условиях эксплуатации, испытаниях, нагрузочных режимах, износах, предельных состояниях и т. д. Для конкретных деталей или агрегатов автомобиля речь идет о формировании локальных информационных баз, обобщение которых позволит перейти к единой информационной базе отрасли.

На основе прогнозов ПН производится выбор оптимальных вариантов конструкции и оптимальной стратегии технического обслуживания и ремонта; разработка мероприятий по повышению надежности; уточнение параметров и режимов работы; планирование выпуска запасных частей, т. е. фактически осуществляется управление надежностью. Следовательно, прогнозная (априорная) информация должна использоваться для решений, связанных с управлением надежностью проектируемой конструкции.

Известно , что процесс принятия решений в общем виде характеризуется, во-первых, наличием одной или нескольких целей; во-вторых, разработкой альтернативных вариантов решений; в-третьих, выбором рационального (оптимального) решения, основанного на определенных критериях, с учетом факторов, ограничивающих возможности достижения цели. В зависимости от исходной информации различают задачи принятия решений в условиях определенности, риска и неопределенности. Для решения задач в условиях неопределенности используется теория статистических решений, которая подразделяется на два направления в зависимости от того имеется или отсутствует возможность проведения экспериментов в процессе принятия решений. Очевидно, разработка мероприятий по управлению надежностью на основе прогнозной информации является типичной задачей принятия решений в условиях неопределенности, зависящей от так называемых природных факторов, не известных или известных с недостаточной точностью в момент принятия решения и обусловленная их недостаточной изученностью.

Комплекс теоретических и прикладных вопросов, связанных с управлением надежностью при проектировании, является логическим продолжением и обобщением теории прогнозирования ПН и представляет, на наш взгляд, самостоятельную проблему. Поэтому, в данной работе целесообразно ограничиться рассмотрением некоторых вопросов управления надежностью, непосредственно относящихся к использованию прогнозной (априорной) информации о показателях надежности в процессе принятия решений.

В статье рассматриваются вопросы прогнозирования показателей надежности современной бортовой аппаратуры космических аппаратов. Показана целесообразность использования результатов испытаний аппаратуры и ее элементов на стойкость к воздействию ионизирующих излучений для прогнозирования показателей надежности. Обоснована возможность применения альфараспределения времени наработки до отказа для прогнозирования показателей безотказности и долговечности КМОП ИС. Приведены расчетные соотношения для оценки вероятности безотказной работы, среднего времени наработки на отказ и минимальной наработки. Показаны возможные пути повышения стойкости современной бортовой аппаратуры космических аппаратов путем использования специализированных способов защиты от воздействий ионизирующих излучений космического пространства. Данное научное исследование (№14-05-0038) выполнено при поддержке Программы «Научный фонд НИУ ВШЭ» в 2014 г.

В работе предлагается методика расчета ограниченных орбит вокруг точки либрации L2 системы Солнце-Земля. Движение космического аппарата (КА) в окрестности точки либрации рассматривается как суперпозиция трех компонент: убывающей (устойчивой), возрастающей (неустойчивой) и ограниченной. Предлагаемая методика позволяет скорректировать вектор состояния КА, таким образом, чтобы нейтрализовать неустойчивую компоненту движения. На основе численных расчетов, выполненных с помощью данной методики, произведено исследование возможных типов орбит вокруг точки либрации, некоторых стратегий коррекции орбитального движения и возможностей одноимпульсного перелета на такие орбиты с низкой околоземной орбиты.

Любая аппаратура, как новая, так и старая, имеет свои экономические показатели. И их можно улучшить, если правильно определять ЗИП. При этом нет необходимости что-либо переделывать аппаратно. Достаточно под задаваемые к аппаратуре показатели правильно рассчитать ЗИП.

В материалах симпозиума «Надёжность и качество в приборостроении и радиоэлектронике» представлены тезисы докладов восьми секций:

Применение САПР для обеспечения высокой надежности изделий;

Математическое моделирование на ЭВМ физических процессов в проектируемых изделиях;

Автоматизированный анализ и обеспечение эффективности, качества и технического уровня сложных изделий и систем;

Методы прогнозирования и повышения надежности и качества изделий;

Обеспечение высокого качества и надежности изделий при производстве и эксплуатации;

Методы ускоренных испытаний;

Анализ причин отказов;

Физический подход к обеспечению надежности изделий.

Авдеев Д. К. , Егоров С. А. , Жаднов В. В. и др. В кн.: Радиовысотометрия - 2010: Сборник трудов Третьей Всероссийской научно-технической конференции. Екатеринбург: ООО «Форт Диалог-Исеть», 2010. С. 154-156.

Приводятся основные характеристики системы АСОНИКА-К-ЗИП и возможности ее применения для расчетов и оптимизации запасов в комплектах ЗИП электронных средств.

В сборнике представлены тезисы докладов Всесоюзной научно-технической конференции «Теория и практика конструирования и обеспечения надёжности и качества электронной аппаратуры и приборов».

М.: МИЭМ НИУ ВШЭ, 2016.

В материалах конференции студентов, аспирантов и молодых специалистов представлены тезисы докладов по следующим направлениям: математика и компьютерное моделирование; информационно-коммуникационные технологии; автоматизация проектирования, банки данных и знаний, интеллектуальные системы; компьютерные образовательные продукты; информационная безопасность; электроника и приборостроение; производственные технологии, нанотехнологии и новые материалы; информационные технологии в экономике, бизнесе и инновационной деятельности; инновационные технологии в дизайне. Материалы конференции могут быть полезны для преподавателей, студентов, научных сотрудников и специалистов, специализирующихся в области прикладной математики, информационно-коммуникационных технологий и электроники.

В настоящее время в астрономии и астрофизике наблюдается значительный рост объёмов экспериментальных данных. В данной работе рассматриваются крупные астрономические проекты с точки зрения передачи, хранения и обработки больших научных данных. Рассмотрена актуальность этих проблем в настоящее время и в будущем.

Екатеринбург: ООО «Форт Диалог-Исеть», 2010.

В сборник трудов включены доклады Третьей Всероссийской научно-технической конференции «Радиовысотометрия - 2010», проходившей с 19 по 21 октября 2010 года в городе Каменск-Уральский.

В сборнике трудов рассмотрены актуальные проблемы радиолокации земной поверхности, совершенствования бортовых радиоэлектронных систем, повышения их точности, надежности и качества цифровой обработки информации, математическое и физическое моделирование бортовых радиоэлектронных систем.

Оргкомитет выражает свою признательность промышленным и научным предприятиям, которые приняли самое непосредственное участие в организации и проведении конференции, и благодарит всех авторов за представленные материалы.

Оргкомитет планирует проведение Четвертой Всероссийской научно-технической конференции по радиовысотометрии в сентябре - октябре 2013 г.

Т. 2. М.: ЗАО "Издательский дом "Столичная энциклопедия", 2012.

В книгу включены материалы ведущих предприятий, организаций, учреждений радиоэлектронной отрасли об истории, современном состоянии и перспективах развития отечественной компонентной базы, использовании новейших технологий в создании совремнных изделий электронной техники, их технических и конструктивных особенностях.

Атлас содержит 8 карт, графики и таблицы, иллюстрирующие основные закономерности и ограничения в области утилизации твердых бытовых отходов в Центральном Федеральном округе. Социальная значимость Атласа состоит в выявлении и типологизации основных "ядер" антропогенного загрязнения, представленных полигонами и свалками ТБО.

Создание атласа осуществлялось при финансовой поддержке Русского Географического общества (грант РГО №59-2013/Н7 "Экологические риски в пригородных и межселенных территориях")

В препринте анализируются некоторые элементы и показатели электронного правительства в различных странах за 2009—2010 годы, и их взаимосвязь с коррупцией в государственном секторе. Широко признан тот факт, что коррупция является нежелательным явлением. При этом продолжаются дискуссии о том, какие из факторов, ее определяющих, наиболее значимы. Авторы исследуют возможную причинно-следственную зависимость установленной взаимосвязи между электронным правительством и коррупцией в государственном секторе. При помощи эконометрического анализа крупных страновых выборок, авторы проверили тесноту связи между индикаторами электронного правительства и показателями Индекса развития ИКТ, такими как качество онлайн-услуг и использование ИКТ, с одной стороны, и уровень восприятия коррупции, с другой стороны. Были проанализированы основные научные публикации, международные рейтинги и базы данных международных организаций. По результатам проведенного исследования предлагаются рекомендации по преодолению слабых сторон международных сопоставительных исследований электронного правительства, а также возможные направления дальнейших исследований в выделенной области.

В статье рассматриваются основы построения моделей измерительных приемников, предназначенных для виртуальных исследований в области ЭМС, в формах, отличных от схемной. Анализируются модели на основе цифровой обработки сигналов, формальные математические модели, а также базирующиеся на графическом программировании. Формулируется общий вывод о перспективах использования таких моделей при построении системы автоматизированного проектирования, реализующей процедуру виртуальной сертификации радиоэлектронных средств по эмиссии излучаемых радиопомех.

Кн. 2: Разработка моделей надёжности для проектных исследований надёжности радиоэлектронной аппаратуры. М.: МИЭМ, 2010.

Излагаются результаты разработки моделей надёжности для проектных исследований надёжности радиоэлектронной аппаратуры, полученные в ходе выполнения II этапа научно-исследовательской работы « Разработка методов и средств для проектных исследований надёжности радиоэлектронной аппаратуры » выполняемой в рамках тематического плана МИЭМ по теме № 100077 : « Разработка моделей надёжности для проектных исследований надёжности радиоэлектронной аппаратуры » .

Приводятся результаты разработки унифицированных топологических моделей надёжности резервированных групп. Описываются формальные модели типовых групп для нагруженного резервирования, для ненагруженного резервирования, для комбинированного контроля работоспособности, для групп с переключателями и групп с восстановлением. Проанализированы способы реализации γ-процентного контроля работоспособности РЭА и СЧ и даны рекомендации по модификации алгоритмов формирования временных диаграмм состояний типовых резервированных групп для различных способов контроля. Предложены методы формирования временных диаграмм состояний для восстанавливаемых резервированных групп для «последовательного» и «параллельного» соединения компонентов. Приводятся результаты экспериментальной проверки разработанных моделей и методов для проектных исследований надёжности РЭА.

Gokhberg L. , Fursov K. , Perani G. Working Party of National Experts on Science and Technology Indicators. DSTI/EAS/STP/NESTI. Organisation for Economic Co-operation and Development, 2012. No. DSTI/EAS/STP/NESTI(2012)9/ANN1.

Документ содержит проект методологических рекомендаций по статистическому измерению технологий. Он включает предложения по формированию операциональных определений технологий, подходы к идентификации классификации новых и возникающих технологий, а также предложения по разработке системы показателей, характеризующих жизненный цикл технологий, и стратегиям сбора данных. Разработанные рекомендации предлагается использовать в качестве методологической основы гармонизированной системы сбора и интерпретации статистических данных о технологиях. В приложении приводятся сведения о доступных определениях технологий и краткие результаты исследования опыта национальных статистических служб в области статистического наблюдения науки и технологий.

Для оценки приближения эмпирического распределения к теоретическому используется критерий согласия Романовского, который определяется по формуле:

где - критерий Пирсона;

r - число степеней свободы.

Если выполняется условие , то это дает основание для утверждения, о возможности принятия теоретического распределения показателей надежности за закон данного распределения.

Критерий Колмогорова позволяет оценить справедливость гипотезы о законе распределения при малых объемах наблюдений случайной величины

где D - максимальная разность между фактической и теоретической накопленными частотами случайной величины.

На основе специальных таблиц определяют вероятность Р того, что если конкретный вариационный признак распределен по рассматриваемому теоретическому распределению, то из-за чисто случайных причин максимальное расхождение между фактическими и теоретическими накопленными частотами будет не меньшим, чем фактически наблюдаемое.

На основе вычисленной величины Р делают выводы:

а) если вероятность Р достаточно велика, то гипотезу о том, что фактическое распределение близко к теоретическому, можно считать подтвержденной;

б) если же вероятность Р мала, то гипотеза отвергается.

Границы критической области для критерия Колмогорова зависят от объема выборки: чем меньше число результатов наблюдений, тем выше необходимо устанавливать критическое значение вероятности.

Если число отказов при наблюдении составило 10-15, то , если больше 100, то . Однако необходимо отметить, что при больших объемах наблюдений лучше пользоваться критерием Пирсона .

Критерий Колмогорова значительно проще других критериев согласия, поэтому он находит широкое применение в исследовании надежности машин и элементов.

Вопрос 22. Основные задачи прогнозирования надежности машин.

Для определения закономерностей изменения технического состояния машины в процессе работы выполняется прогнозирование надежности машин.

Различают три этапа прогнозирования: ретроспекцию, диагностику и прогноз. На первом этапе устанавливают динамику изменения параметров машины в прошлом, на втором этапе определяют техническое состояние элементов в настоящем, на третьем этапе прогнозируют изменение параметров состояния элементов в будущем.

Основные классы задач прогнозирования надежности машин могут быть сформулированы следующим образом:

    Предсказание закономерности изменения надежности машин в связи с перспективами развития производства, внедрением новых материалов, повышением прочности деталей.

    Оценка надежности проектируемой машины до того, как она будет изготовлена. Эта задача возникает на стадии проектирования.

    Прогнозирование надежности конкретной машины (узла, агрегата) на основании результатов изменения ее параметров.

    Прогнозирование надежности некоторой совокупности машин по результатам исследования ограниченного числа опытных образцов. С задачами такого типа приходится сталкиваться на этапе производства техники.

5. Прогнозирование надежности машин в необычных условиях эксплуатации (например, при температуре и влажности окружающей среды выше допустимой).

Специфика отрасли строительного машиностроения предполагает точность решения задач прогнозирования с погрешностью не более 10-15 % и использование методов прогнозирования, позволяющих получить решение задач в кратчайшие сроки.

Методы прогнозирования надежности машин выбирают с учетом задач прогнозирования, количества и качества исходной информации, характера реального процесса изменения показателя надежности (прогнозируемого параметра).

Современные методы прогнозирования могут быть разделены на три основные группы:

Методы экспертных оценок;

Методы моделирования, включающие физические, физико-математические и информационные модели;

Статистические методы.

Методы прогнозирования, основанные на экспертных оценках, заключаются в обобщении, статистической обработке и анализе мнений специалистов относительно перспектив развития данной области.

Методы моделирования базируются на основных положениях теории подобия. На основании подобия показателей модификации А, уровень надежности которой исследован ранее, и некоторых свойств модификации Б той же машины, прогнозируются показатели надежности Б на определенный период времени.

Статистические методы прогнозирования основаны на экстраполя­ции и интерполяции прогнозируемых параметров надежности, полученных в результате предварительных исследований. В основу метода положены законо­мерности изменения параметров надежности машин во времени.

Вопрос 23. Этапы прогнозирования надежности машин.

При прогнозировании надежности машин придерживаются следующей последовательности:

    Проводят классификация деталей и сборочных единиц по принципу ответственности. К деталям и сборочным единицам, отказы которых опасны для жизни людей, устанавливают более высокие требования безотказности.

    Формулируют понятия отказа деталей и сборочных единиц проектируемой системы. При этом необходимо учитывать только те детали и сборочные единицы, отказ которых приводит к полной или частичной утрате работоспособности системы.

3. Выбирают метод прогнозирования надежности в зависимости от этапа проектирования системы, точности исходных данных и принятых допущений.

    Составляют структурную схему изделия, включающую основные функциональные детали и сборочные единицы, в том числе детали и сборочные единицы силовых и кинематических цепей, расположенные по уровням в порядке их подчиненности, и отражающую связи между ними.

    Рассматривают все детали и сборочные единицы, начиная с верхнего уровня структурной схемы и кончая нижним, с подразделением их на следующие группы:

а) детали и сборочные единицы, показатели которых следует определять расчетными методами;

б) детали и сборочные единицы с заданными показателями надежности, включая назначенные параметры потока отказов;

в) детали и сборочные единицы, показатели надежности которых следует определять опытно-статистическими методами или методами испытаний.

6. Для деталей и сборочных единиц, надежность которых определяют расчетными методами:

Определяют спектры нагрузок и другие особенности эксплуатации, для чего составляют функциональные модели изделия и его сборочных единиц, которые, например, могут быть представлены матрицей состояний;

Составляют модели физических процессов, приводящих к отказам,

Устанавливают критерии отказов и предельных состояний (разрушение от кратковременных перегрузок, наступление предельного износа и др).

Классифицируют их на группы по критериям отказов и выбирают для каждой группы соответствующие методы расчета.

7. Строят при необходимости графики зависимости показателей надежности от времени, на основании которых сравнивают надежности отдельных деталей и сборочных единиц, а также различных вариантов структурных схем системы.

8. Hа основании проведенного прогнозирования надежности делают вывод о пригодности системы для применения по назначению. Если расчетная надежность окажется ниже заданной, разрабатывают мероприятия, направленные на повышение надежности рассчитываемой системы.

Вопрос 24. Прогнозирование надежности машин


^ Вопрос 24. Прогнозирование надежности машин

при помощи структурных схем.

При анализе надежности применяют метод структурных схем. Структурная схема представляет собой условную математическую и физическую модель изделия, по которой прогнозируется надежность в зависимости от уровня безотказности каждой детали и сборочной единицы.

Изделие при использовании структурных схем рассматривается как состоящее из отдельных элементов, предполагая, что отказ каждого элемента является независимым событием.

Различают последовательное, параллельное и комбинированное соединение элементов.

Под системой с последовательным соединением понимают такое соединение, когда отказ хотя бы одного элемента приведет к отказу всей системы.

Рисунок – Система с последовательным соединением элементов.

Вероятность безотказной работы системы n элементов в течение времени t определяют по формуле:

Где Р i (t) - вероятность безотказной работы i-го элемента за время t.

Если элементы равнонадежные, то есть
, то вероятность безотказной работы системы:

.

Вероятность отказа системы в течение времени t равна:

Частота отказов системы f c (t) определяется соотношением:

.

Интенсивность отказов системы:

,

Где
- интенсивность отказов i-го элемента;

Среднее время безотказной работы системы:

.

Система с параллельным соединение м элементов откажет лишь тогда, когда откажут все элементы.

Рисунок – Система с параллельным соединением элементов.

Вероятность безотказной работы системы при параллельном соединении n элементов в течение времени t будет равна:

.

Если элементы равнонадежные, т.е. , то

.

На практике одновременно встречаются оба вида соединения, тогда изделие рассматривается как смешанная система.

Рисунок – Система с комбинированным соединением элементов.

Вероятность безотказной работы в данном случае определяется по формуле:

Надежность системы с последовательным соединением элементов с ростом даже высоконадежных элементов значительно уменьшается.

Повышение надежности системы достигается за счет параллельного соединения элементов, хотя конструктивно в механической системе этот способ не всегда может быть реализован, т.к. увеличивает габариты и массу нефтепромыслового оборудования.

^ Вопрос 25. Резервирование как метод повышения надежности машин.

Одним из основных способов повышения надежности машин является резервирование.

Резервирование - структурная избыточность, предполагающая наличие в системе дополнительных элементов, не являющихся функционально необходимыми (наличие у автомобиля четырехколесных тормозных механизмов при функциональной достаточности двух).

Элемент на рисунке является основным и называется резервируемым. Элементы 2 ... n , предназначены для выполнения функций в случае отказа элемента 1, называются резервными.

Отношение количества резервных элементов к числу основных называется кратностью резерва .

Резервирование с кратностью единица называется дублированием .

Резерв по характеру нагружения делится на:

- нагруженный , при этом резервный элемент работает с той же интенсивностью, что и основной;

- облегченный , когда резервный элемент работает с меньшей интенсивностью, до тех пор пока не отказал основной;

- ненагруженный , в этом случае резервный элемент не используется до тех пор, пока не вышел из строя основной.

По масштабу резервирования различают на:

- общий резерв , при котором используется целая резервная система (дополнительный буровой насос в циркуляционной системе);

Рисунок– Схема общего резервирования системы.

- раздельный резерв , который предусматривает резервирование отдельных элементов системы (всех или только некоторых, наименее надежных, например, запасные втулки или поршни бурового насоса).

По восстанавливаемости отказавших элементов:

- резервирование с восстановлением , при котором восстановление отказавших основных и (или) резервных элементов технически возможно без нарушения работоспособности объекта в целом;

- резервирование без восстановления , при котором восстановление отказавших элементов (основных и (или) резервных) технически невозможно без нарушения работоспособности объекта в целом.

Повышение надежности подверженных старению технических систем в процессе эксплуатации может быть обеспечено только резервированием методами ремонта:

- нагруженным эксплуатационным резервированием , т. е. повышением ремонтопригодности изделия до уровня, исключающего образование критических дефектов, которые могли бы вызвать неремонтопригодное состояние объекта в течение определенной наработки;

- ненагруженным эксплуатационный резервированием - заменой отказавших элементов системы на ремонтные комплекты.

^ Вопрос 26. Роль технологии в обеспечении надежности машин.

Технологический процесс изготовления, сборки и контроля изделия должен с наименьшими затратами времени и средств обеспечить требуемый уровень качества продукции, включая и надежность.

Зависимость показателей надежности от уровня технологического процесса можно представить следующей схемой:

Последовательность технологических операций, применяемые методы и режимы обработки оказывают непосредственное влияние на износостойкость, прочность, коррозионную стойкость, теплостойкость, стабильность механических и физических свойств идругие эксплуатационные показатели изделий.

Совершенство технологического процесса во многом определяет и достигнутый уровень надежности изделия, так как именно в процессе изготовления обеспечивается заложенная конструктором надежность. Технологические методы обеспечения надежности имеют такое же решающее значение как конструктивные и эксплуатационные.

^ Вопрос 27. Понятие надежности технологического процесса.

Надежность технологического процесса - это его свойство обеспечивать изготовление продукции в заданном объеме, сохраняя во времени установленные требования к ее качеству.

Таким образом, технологическая система должна быть работоспособна как по показателям качества, так и по производительности. Свойство надежности технологического процесса отличается от понятия точности и стабильности.

Точность - свойство технологического процесса обеспечивать соответствие поля рассеивания значений показателя качества изготовления продукции заданному полю допуска и его расположению. Точность характеризует технологический процесс в некоторый фиксированный момент времени. Поэтому точность следует рассматривать как составную часть свойства надежности системы.

Стабильность - свойство технологического процесса сохранять показатели качества изготовляемой продукции в заданных пределах в течение некоторого времени. Понятие стабильности характеризует технологический процесс с позиции сохранения в заданных пределах показателей качества продукции. Технологический процесс может быть стабильным, но иметь низкую надежность.

Надежность технологических систем должна оцениваться только по тем параметрам и показателям качества изделия, уровень которых зависит от технологии изготовления.

При расчете надежности технологических систем следует исходить из того, что в конструкторской документации однозначно заданы номинальные значения и показатели качества готового изделия. Задача технолога оценить насколько процесс изготовления обеспечивает соблюдение установленных требований, не рассматривая технический уровень самих изделий. Поэтому технологический процесс может обладать высокой надежностью, хотя получаемая при его реализации продукция будет относиться к низкой категории качества, или морально устареть.

Показатели, которыми оценивается надежность технологического процесса, те же, что и для оценки надежности любой системы. При этом под безотказностью данного процесса понимается вероятность нахождения его технологических параметров в допустимых пределах в течение рассматриваемого периода времени.

^ Вопрос 28. Цели и виды испытаний на надежность.

Наиболее достоверную информацию о надежности машин получают в результате испытаний или наблюдений за машинами в процессе их эксплуатации.

В зависимости от целей испытаний их делят на два класса:

Исследовательские испытания

Испытания на надежность.

Исследовательские испытания проводят на стадии проектирования обычно на моделях, макетах или опытных образцах с целью выявления функциональных возможностей техники. Эти испытания необходимы в тех случаях, когда в машине применены новые физические эффекты, процессы, принципы компоновки или новые элементы (например, новые рабочие органы строительных машин).

Испытания на надежность проводят с целью определения и контроля по-казателей надежности машин и их элементов, исследование процессов, приводящих к отказам, выявления наиболее слабых элементов и определения причин их надежности.

^ Виды испытаний на надежность:

1. По уровню составных частей , подвергающихся испытаниям, различают испытание отдельных элементов или машины в целом. При элементных испытаниях отдельно может оцениваться надежность механической передачи, гидропривода, рамы, ходовой части, двигателя и т.п. В этом случае уменьшаются затраты времени и средств, более глубоко проводится обследование, имеются лучшие возможности для согласования и корректировки решений, расширяется унификация элементов. В тоже время нельзя полностью заменить испытание машины испытаниями элементов, так как при этом не учитывается взаимодействие различных узлов, входящих в машину.

2. По срокам проведения испытания могут быть ускоренные и нормальные.

Ускоренные испытания позволяют получить необходимый объем информации о надежности в более короткий срок, чем при нормальных условиях и режимах эксплуатации.

Нормальные испытания позволяют получить необходимую информацию о надежности в такой же срок, как и при работе машины в эксплуатационном периоде.

3. По месту и способу проведения, испытания делятся на:

Стендовые, которые проводят на специальном оборудовании (стендах), позволяющем воспроизводить заданные условия испытания изделия (создавать силовые, температурные и др. виды воздействия, реализовывать требуемый режим функционирования, например, двигателя или рабочего органа), а также обеспечивающем возможность измерения параметров технического состояния объекта и условий испытаний;


  • полигонные испытания, которые выполняются на специальных площадках (полигонах), где имеется возможность имитировать различные сочетания эксплуатационных воздействий в условиях, близких к реальным, а также контролировать условия испытаний и техническое состояние машины;

  • эксплуатационные испытания (наблюдения) дают наиболее полную и достоверную информацию о надежности машин в конкретных эксплуатационных условиях. Проводят их во время нормальной эксплуатации машины.
4. При проведении контрольных испытаний на надежность в ряде случаев рекомендуют их подразделять на испытания на безотказность, ремонтопригодность, сохраняемость и долговечность.

Испытания изделий на безотказность сводятся к контролю вероятности безотказной работы за заданное время или к определению наработки на отказ (средней наработки до первого отказа).

Испытания на ремонтопригодность обычно проводятся для определения среднего времени восстановления или вероятности восстановления работоспособности изделия за заданное время.

Испытания на долговечность предназначаются для контроля среднего или гамма-процентного ресурса.

Испытания на сохраняемость предусматриваются для контроля вероятности сохранения показателей изделия в течение заданного срока.

^ Вопрос 29. Объекты испытания на надежность.

Объектом испытаний могут быть:

образцы , если испытываются свойства материалов, определяющие долговечность изделий (испытания на износостойкость, усталостную прочность, коррозионную стойкость и т. п.);

детали , сопряжения и кинематические пары - для учета влияния конструктивных и технологических факторов на срок службы данных сопряжений (испытание подшипников, зубчатых колес, направляющих, шарниров и т. п.);

узлы машины , когда учитывается взаимодействие отдельных механизмов и элементов конструкции и их влияние на показатели работоспособности (испытание коробок скоростей и редукторов, двигателей, гидроагрегатов, систем управления, отдельных функциональных узлов машины);

машина в целом , когда учитывается взаимодействие всех механизмов и узлов в машине, условия ее эксплуатации и режимы работы (стендовые и эксплуатационные испытания насосов, автомобилей, текстильных машин и др.);

система машин , когда показатели надежности учитывают взаимодействие отдельных машин, связанных в единый производственный комплекс (надежность работы добывающих насосных установок, машин и агрегатов буровой установки, комплексов оборудования для интенсификации добычи нефти и т. п.).

Таким образом, объектом испытания могут быть разнообразные изделия от очень простых, обладающих однородными свойствами и одним или несколькими выходными параметрами, до сложных машин и комплексов, а также специально изготовленные модели (изделие или его часть, выполненные в масштабе) или макеты (упрощенное воспроизведение изделия или его части). Методика испытаний на надежность и их объем зависят от сложности изделия и его специфических особенностей.

^ Вопрос 30. Характеристики, оцениваемые при испытании на надежность.

Выделяют две основные группы характеристик изделия, которые являются объектом измерения и оценки при испытании на надежность.


  1. Характеристики процессов старения и разрушения и определение соответствующей им степени повреждения изделия. Так, при испытании изучается протекание процессов изнашивания, коррозии деформации, усталостных разрушений, и других, которые являются основной причиной потери изделием работоспособности.

  2. Характеристики изменения выходных параметров изделия (точности, КПД, несущей способности и т. д.), выход которых за допустимые пределы приводит к отказу.
Оценка процессов повреждения или выходных параметров изделия зависит от объекта испытания и поставленных задач. Чем сложнее объект испытания, тем большая доля общего объема испытаний приходится на оценку выходных параметров (рисунок).

При испытании материалов исследуются те процессы, которые приводят к его разрушению или изменению свойств (рисунок).

Для деталей и сопряжений кроме процессов повреждения определяются, как правило, и их выходные параметры - точность движения (вращения), изменение взаимного положения (износ сопряжения), коэффициент трения и др.

Для механизмов узлов и машин основным объектом измерения являются их выходные параметры. Процессы повреждения уже исследовались и оценивались при испытании отдельных элементов и узлов машины. При испытании всей машины процессы старения обычно регистрируются лишь для наиболее ответственных элементов, в основном определяющих работоспособность сложного изделия, например износ цилиндров двигателя, направляющих станка и т. п.

Задачи испытания и объекты измерения должны быть указаны в разрабатываемых для каждого случая методике и плане испытаний.

^ Вопрос 31. Причины отказа изделия раньше установленного ресурса.

В процессе эксплуатации изделия нередко отказы возникают раньше, чем это установлено ресурсом, что приводит к неожиданному прекращению работы машины или к снижению ее эффективности.

Различные факторы, действующие на машину при эксплуатации, связанные с климатическими, биологическими условиями и внешними воздействиями, создают комплекс причин для ускорения процессов старения и разрушения.

Так, повышенная влажность среды, колебания температуры, загрязненность атмосферы, ветер, акустический шум, солнечная радиация, плесень, бактерии, насекомые, грызуны - вот неполный перечень тех факторов, которые приходится учитывать при оценке возможности отказа изделия в различных условиях эксплуатации.

Чем большие воздействия оказывает на машину среда, тем выше вероятность отказа, которая резко возрастает при работе изделия в несвойственной ему обстановке. В этих случаях надо оценивать не вероятность отказа, а вероятность возникновения недопустимой ситуации.

При возникновении преждевременных отказов часто создается конфликтная ситуация между конструкторами, технологами и эксплуатационниками. Чтобы найти виновника и источник возникновения отказа необходимо проанализировать причины преждевременного отказа, т.е. обстоятельства, которые обусловили внезапность его возникновения.

Рассмотрим основные критерии для решения вопроса об ответственности той или иной службы за возникновение отказа.

Таблица 5 - Категории преждевременных отказов

Если отказ возник при нормальных условиях эксплуатации изделия без технологических дефектов, то возникновение такого отказа - допустимое событие, если число случаев отказа находится в регламентированных пределах.

Если же отказ связан с нарушением ТУ при изготовлении и эксплуатации изделий или неправильными расчетами при проектировании изделия, то соответствующие подразделения должны вносить коррективы в свою деятельность - пересмотреть методы расчета и прогнозирования надежности, повысить надежность технологического процесса, усовершенствовать методы эксплуатации и ремонта машины и т. п.

Большую информацию о преждевременных и недопустимых отказах, возникающих в процессе эксплуатации, могут дать рекламации потребителя, если они подвергаются тщательной обработке и анализу.

^ Вопрос 32. Периоды эксплуатации машин.

Под эксплуатацией машины понимают весь срок еесуществования от выпуска заводом-изготовителем до снятия с эксплуатации, который может состоять из отдельных периодов (табл.), во время которых работоспособность машины либо уменьшается, либо восстанавливается.

Таблица 4. Периоды эксплуатации машин.


Период эксплуатации

Работоспособность машин

I.Простои машины

Консервация и хранение

Транспортировка

Проверка работоспособности (диагностика) или наладка (подготовка к работе)

Простои (ожидание работы или ремонта)


Как правило, изменяется незначительно

II. Работа машины

Работа при нормальных режимах и условиях эксплуатации

Работа при повышенных режимах

Работа при пониженных режимах

Работа при проверках и испытаниях


Снижается

III. Ремонт машины

Плановые периодические ремонты

Техническое обслуживание

Аварийные ремонты


Восстанавливается

От структуры процесса эксплуатации, т. е. от чередования и длительности отдельных периодов, во многом зависит выбор показателей надежности, которые отражают требования к безотказности изделия в период его работы и возможность длительного поддержания работоспособности изделия.

Кроме того, характер работы машины во времени определяет период, в течение которого следует оценивать ее безотказность. На фактические показатели надежности существенное влияние оказывают условия и методы эксплуатации машины, применяемая система ремонта и технического обслуживания, квалификация персонала.

^ Вопрос 33. Влияние системы обслуживания на надежность машин.

Потеря машиной работоспособности в процессе ее эксплуатации - неотвратимый процесс, протекающий в зависимости от конструкции машины и условий ее использования с большей или меньшей интенсивностью.

Предельным состоянием изделия будет такое, при котором вероятность выхода его параметров за допустимые пределы достигнет установленного уровня. Начиная с этого момента, изделие нуждается в восстановлении утраченной работоспособности.

Это достигается путем ремонта узлов и элементов машины, заменой износившихся частей запасными, регулировкой механизмов и другими методами, которые для краткости будем называть одним термином - ремонт.

От системы ремонта и ТО, которая определяет периодичность и объемы ремонтных работ, зависят показатели надежности изделия. Эта система для любой машины строится, как правило, на основании следующих принципов:

Для удобства эксплуатации машины и планирования ремонта предусматриваются периодические остановки машины для ее ремонта и профилактических мероприятий через заданные, как правило, равные промежутки времени (или после выполнения заданного объема работы);

Объемы периодических ремонтных работ и соответственно длительность простоя машины в ремонте неодинаковы, так как должно быть обеспечено восстановление работоспособности машины при протекании разнообразных процессов старения.

При разработке системы ремонта и технического обслуживания необходимо учитывать следующее:

В каждой машине, как правило, имеются детали и элементы с широким диапазоном их потенциальных сроков службы (наработки) до отказа;

Современные технические возможности позволяют осуществить ремонт и восстановить утраченную работоспособность для любых отказов машины (кроме особых случаев - например, гибели изделия в результате катастрофы); вопрос может идти лишь о больших или меньших затратах времени и средств;

Система ремонта и технического обслуживания имеет как общие для данного типа машин черты (например, характер и последовательность периодических ремонтов), так и параметры, отражающие уровень надежности машин данного назначения (например, время до капитального ремонта), основные параметры системы ремонта связаны с показателями надежности машины;

Система ремонта назначается для машины в целом, поэтому вероятность отказа отдельных узлов и механизмов машины и их регламентированные сроки службы (наработки) должны назначаться с учетом периодичности ремонтов, принятой данной системой;

При оценке работоспособности машины деление деталей и узлов на ремонтируемые и неремонтируемые не обязательно; для восстановления работоспособности машины неважно, заменяется или ремонтируется деталь, важно лишь, чтобы замененная или отремонтированная деталь отвечала техническим условиям;

При разработке технологических процессов ремонтных работ необходимо учитывать их влияние на качественные показатели отремонтированных изделий.

^ Вопрос 34. Методы повышения надежности нефтепромыслового оборудования

Методы и возможности по повышению надежности машин весьма разнообразны и связаны со всеми этапами проектирования, изготовления и эксплуатации машин. Проводимые в этой области мероприятия разделяются на несколько генеральных направлений.

1. Повышение сопротивляемости машин внешним воздействиям:

Создание прочных жестких, износостойких узлов за счет их рациональной конструкции;

Применение материалов с высокой прочностью, износостойкостью, антикоррозионностью, теплостойкостью;

Уменьшение нагрузок, действующих на механизм;

Применение упрочняющей технологии;

Исключение влияния технологической наследственности и др.

2. Изоляция машин от вредных воздействий.

Установка машины на фундамент,

Защита поверхностей от запыления и загрязнения,

Создание для машин специальных условий по температуре и влажности,

Применение антикоррозийных покрытий и т. д.

3. Создание оптимальной конструкции машины: с позиций надежности оптимальной будет такая конструкция машины и ее элементов, когда с наименьшими затратами средств достигается требуемая продолжительность работы отдельных узлов, механизмов и машины в целом при заданной безотказности и регламентированных затратах на ремонт и техническое обслуживание.

4. Применение автоматики для повышения надежности машин.

Проблема надежности машин возникла в первую очередь в связи с развитием автоматизации, с необходимостью обеспечить бесперебойную работу и взаимодействие механических, электрических, гидравлических и других устройств. Создание самонастраивающихся и саморегулируемых машин позволяет машине не только обладать способностью выполнять заданную работу, но и осуществлять свои функции длительное время, не опасаясь как внешних воздействий, так и процессов, происходящих в самой машине.

5. Создание машин с регламентированными показателями надежности. Под регламентацией показателей надежности понимается, знание законов распределения сроков службы (наработки), законов распределения скоростей изнашивания (или других процессов старения), характеристик начального состояния машины и всех тех данных, которые определяют область работоспособности машины и вероятность нахождения машины в заданном состоянии.

^ Вопрос 35. Направления дальнейших исследований в области надежности машин

Проблемы, которые являются первоочередными для дальнейших исследований по надежности машин и представляют самостоятельные направления в данной области:


  1. ^ Разработка моделей параметрических отказов. Развитие идей о взаимодействии машины со средой, учет обратных связей «процессы - выходные параметры машины», оценка взаимодействия параметров и других особенностей потери работоспособности сложных систем позволит разработать более совершенные модели отказов разнообразных машин и изделий. Эти модели должны учитывать внутренние связи и внешние воздействия, характерные для данной категории машин, давать основу для разработки алгоритмов по оценке надежности сложных изделий.

  2. ^ Динамика медленных процессов должна изучать те изменения в узлах и элементах машины, которые происходят в течение длительных промежутков времени. Эти процессы являются причиной отказов машины и изменения ее состояния со временем. Можно использовать фундаментальные принципы динамики машин и теории автоматического управления. При этом в первую очередь надо учитывать большую инерционность систем, возрастание периодичности внешних воздействий, взаимодействие обратимых и необратимых процессов, малую скорость процессов.

  1. ^ Прогнозирование надежности сложных систем. Для различных категорий машин необходимо дальнейшее развитие и воплощение идей о прогнозировании надежности на основе моделей отказов, которые базируются на закономерностях процессов повреждения (физики отказов) с учетом их вероятностной природы. Перспективным является использование методов статистического моделирования, когда учитываются вероятностные характеристики режимов и условий работы машины, внешних воздействий и протекающих процессов старения. Особенно актуальны еще недостаточно разработанные методы прогнозирования надежности с учетом процессов изнашивания, которые являются основной причиной отказов многих машин. Особую проблему представляет изучение надежности комплексов «машина - автоматическая система управления», так как взаимодействие механических и электронных систем порождает ряд новых аспектов теории надежности.

  2. ^ Нормирование показателей надежности. Разработка нормативов для показателей безотказности и долговечности машины, регламентация скоростей процессов, предельных состояний машины и ее элементов, запасов надежности, скорости изменения выходных параметров - необходимое условие для эффективного использования машин.
Базой является экономический фактор, оценивающий последствия отказов и выступающий в качестве критерия для оптимизации требований к показателям надежности.

  1. ^ Влияние износа на динамические параметры машины. Для многих машин динамика лимитирует (ограничивает) допустимые величины износов и ресурс изделия. В уравнениях динамики присутствуют показатели, зависящие от времени и имеющие случайную природу. Раскрытие этих закономерностей позволит объяснить многие сложные явления, связанные с изменением выходных параметров машины во времени, с отказами функционирования из-за разрушения ее элементов. Последнее часто является следствием возрастания динамических нагрузок в машине при износе ее элементов.

  2. ^ Разработка систем информации о надежности из сферы ремонта необходима для управления надежностью, оценки тенденций ее изменения и достигнутого уровня. Чем выше требования к безотказности изделий, тем меньше информации поступает из сферы эксплуатации. Необходимо создание специальных систем информации о степени повреждения элементов ремонтируемых изделий, не достигнувших предельного состояния и не имеющих отказов, для недопущения которых и производится их ремонт. Этот позволит оценить степень использования потенциальных возможностей изделия по надежности и обоснованно назначить ресурс для машины и ее агрегатов.

  3. ^ Испытание на надежность сложных систем. Основой для разработки методик испытаний сложных систем являются развитие методов испытания в сочетании с прогнозированием и использованием заданной информации, разработка алгоритмов по оценке надежности с учетом постоянно поступающей информации о состоянии изделия, выявление экстремальных реализаций потери изделием работоспособности, сочетание испытания со статистическим моделированием, оценка и прогнозирование ведущих процессов старения.

  4. ^ Анализ надежности технологического процесса. Технологический процесс должен обеспечить устойчивое формирование всех параметров изделия, которые определяют его надежность. Анализ структуры технологического процесса, применяемых методов и режимов обработки, методов контроля, учет остаточных и побочных явлений, связанных с обработкой и сборкой изделий, оценка технологической наследственности, использование принципов адаптации и саморегулирования позволят более эффективно решения обеспечивать надежность изделий при производстве.
^ 9. Оптимизация системы ремонта технического обслуживания. Выявление рациональных методов ремонта и Т. О. связано с их оптимизацией, в первую очередь, по критерию экономичности, что требует учета вероятностных процессов потери машиной работоспособности и реальных возможностей по ее восстановлению. Правильная организация системы ремонта и обслуживания может при тех же затратах значительно повысить эффективность использования сложных технических устройств и машин.

^ 10. Использование автоматики для обеспечения надежности машин. Создание кибернетических систем, предотвращающих вредные последствия процессов, протекающих в машине, воплощение принципа адаптации и саморегулирования не только для рабочих функций машины, но и для сохранения ее качественных показателей.

Широкий фронт исследовательских и конструкторских работ в области надежности машин являются залогом обеспечения с минимальными затратами времени и средств необходимого уровня надежности машин и изделий.